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We introduce an accurate and efficient algebraic technique for the computation of the vibrational spectra of
triatomic molecules, of both linear and bent equilibrium geometry. The full three-dimensional potential energy
surface (PES), which can be based on entirely ab initio data, is parametrized as a product Morse-cosine
expansion, expressed in bond angle internal coordinates, and includes explicit interactions among the local
modes. We describe the stretching degrees of freedom in the framework of a Morse-type expansion on a
suitable algebraic basis, which provides exact analytical expressions for the elements of a sparse Hamiltonian
matrix. Likewise, we use a cosine power expansion on a spherical harmonics basis for the bending degree of
freedom. The resulting matrix representation in the product space is very sparse, and vibrational levels and
eigenfunctions can be obtained by efficient diagonalization techniques. We apply this method to carbonyl
sulfide, hydrogen cyanide, water, and nitrogen dioxide. When we base our calculations on high-quality PESs
tuned to the experimental data, the computed spectra are in very good agreement with the observed band
origins.

I. Introduction

The present-day fast development of new spectroscopic
instruments and methods allows us to measure vibrational states
with high accuracy even in the energy region near the molecular
dissociation.1-3 Characterizing these new experimental data is
especially important, for instance, for understanding the dynam-
ics of chemical reactions and for analyzing spectra from remote
regions (e.g., upper atmosphere and/or interstellar matter), where
strong radiation along with low pressure can stabilize molecules
in extraordinarily excited states, sometimes promoting unusual
reactions. All energy levels depend sensitively on the detailed
shape of the molecular potential energy surface (PES). Their
qualitative and also quantitative description calls for the
development of more and more accurate theoretical approaches.3-8

The present-day status of the art program codes for the
accurate calculation of vibrational spectra of small molecules
has been developed in J. Tennyson’s (TRIATOM,4 DVR3R,5...)
and P. Jensen’s (MORBID,6 TROVE 7) groups. They are based
on different approaches and find the best use for different kinds
of small (in particular triatomic) molecules. TRIATOM focuses
mainly on van der Waals complexes and employs Legendre and
Laguerre polynomials as basis functions. The matrix elements
are integrated numerically using a discrete variable representa-
tion (DVR) based on the Gauss-Jacobi and Gauss-Laguerre
quadrature for all three internal coordinates. The resulting spectra
depend on the DVR grid in a nonvariational fashion. The
MORBID code is useful mainly for standard rigid molecules.
It takes advantage of Morse oscillator basis functions, for which
the matrix elements of pure stretching motion are known
analytically. However, the bending basis functions are evaluated
in the framework of a numerical integration technique, which
can be a time-consuming step. Modern fully variational ap-

proaches use a finite basis representation of the vibrational space:
the TROVE implementation in principle allows variational
calculations to be performed for general polyatomic molecules
of arbitrary structure. However, in that approach, the kinetic
energy operator is represented only approximately as a power
expansion in terms of internal coordinates. That approximation
produces adequately accurate energy levels only rather low in
energy, where the wave function has a limited spread around
the molecular equilibrium position, where the power expansion
is accurate.

In the present work we introduce a virtually exact variational
method, which joins the main advantages of (i) simple algebraic
forms of matrix elements, (ii) completeness of the basis set,
and (iii) sparseness of the resulting Hamiltonian matrix. In
concrete, we describe the stretching modes with a formalism
based on the Morse oscillator,9 with some similarity to the
algebraic approaches of ref 10. The main advantage of a
potential expansion in terms of Morse coordinates is that one
can use a quantum mechanical basis on which the matrix
representation of the Hamiltonian operator is sparse and can be
computed analytically using algebraic techniques based on
generalized step operators. For the bending mode we choose a
cosine power expansion of the potential and a quantum
mechanical basis of spherical-harmonic functions. We then
formulate and solve numerically the multidimensional problem
of the vibrations of a polyatomic molecule in a product space
of the different degrees of freedom. The sparse quality of the
individual matrices representing the one-dimensional vibrations
and the interaction terms carries forward to the global matrix
representation of the total Hamiltonian on the product Hilbert
space. The eigenvalues and eigenvectors of the resulting sparse
matrix can then be obtained numerically quite efficiently by
modern exact diagonalization tools. In principle, this method
can be applied to molecules composed by any number of atoms,
even though in practice the size of the product Hilbert space
grows exponentially in the number of dimensions, which makes
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this method, like all virtually exact methods, rather unpractical
for molecules with six or more atoms. In this study we focus
on triatomics, but we construct the theory in terms of basic
building blocks usable for successive extensions to the multi-
dimensional potential surfaces of polyatomic molecules, which
will be the subject of future investigation.

The present approach bears some resemblance to Lie algebraic
methods based on a Heisenberg formulation of quantum
chemistry (the second quantization of the Schrödinger equation).
Several previous studies 10-13 use an algebraic approach where
the full Hamiltonian operator is expanded in powers of C, a
Casimir operator of a suitable Lie algebra, for example, as
follows: Ĥ ) E0 + ∑i)2

k Ai[C (O(2))]i. The trouble with that kind
of expansion is that it maps to an explicit first-quantized
Hamiltonian form involving intricate mixed potential and kinetic
contributions, including high powers of the momentum operator
and unphysical products of the momentum and position opera-
tors. To avoid such unwanted properties, we express separately
the potential V and kinetic T energy operators. This can be done
within a convenient scheme of ladder operators defined by
means of a suitable factorization method.9,14

In Section II we sketch the model used, including the
Hamiltonian, basis functions for stretching and bending modes,
and formulas for the matrix elements. In Section III we report
and discuss the vibrational spectra of carbonyl sulfide (OCS),
hydrogen cyanide (HCN), nitrogen dioxide (NO2), and water
(H2O) as obtained with the present method. In Section IV we
discuss the approximations involved in the present method and
its future extensions.

II. Theory

We perform all calculations in the bond length and angle
internal coordinates, as illustrated in Figure 1. This is the most
suitable choice of variables for the potential expansion involving
Morse functions. R1 and R2 represent the bond lengths between
the central atom and the two end atoms, and θ is the bending
angle at the central atom. Given the masses m1 and m2 of the
end atoms and m3 of the central atom, we define the two diatom
reduced masses µ1 ) m1m3/(m1 + m3) and µ2 ) m2m3/(m2 +
m3). The vibrational Hamiltonian, composed by a kinetic and a
potential part, can be expressed in atomic units (p ) me ) qe

) 1) as follows:

H(R1, R2, θ) ) T(R1, R2, θ) + V(R1, R2, θ) (1)

The standard expression for the pure vibrational kinetic energy
operator in internal coordinates15,16 is
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This expression is singular at four boundary regions: at Ri f 0
and at the bending extremes θ ) 0 and θ ) π. While the former
constitute no serious practical problem, since the vibrational
motion avoids these regions due to the strongly repulsive nature
of the potential energy function V there, the angular singular
points are easily reached by the motion: in particular θ ) π is
the angular minimum energy direction in the case of linear
molecules, and this may require explicit care to obtain a
numerically stable algorithm. Specifically, the Πz operator in
the final row, defined in ref 16, accounts for the rotations of
the molecule around an axis attached to it and coincident with
the molecular axis when the molecule reaches its linear
configuration θ ) 180°: for our purpose Πz can be replaced
everywhere with its eigenvalue m. The final term ∝ Πz

2

describes the kinetic energy contribution of a rotational degree
of freedom of bent molecules (and in this case we omit it), but
it is needed to account for the fourth vibrational degree of
freedom describing the m ) (1 “Π”, m ) (2 “∆”, etc. axially
rotating vibrational excitations of those molecules such as OCS
and HCN, which are linear in their equilibrium geometry. For
simplicity, in the main text we will stick mostly to m ) 0, while
the Appendix shall deal with the general algebra describing an
arbitrary integer value of m.

We use the following parametrization of the potential energy
surface:

V(R1, R2, θ) ) ∑
k1,k2,k3)0

k1+k2+k3eNc

ak1k2k3
V1(R1)

k1 V2(R2)
k2 u(θ)k3 (3)

This power expansion is realized in terms of Morse-related
functions

Vi(Ri) ) e-Ri(Ri-Ri,min) - 1 (4)

for the stretching degrees of freedom i ) 1 or 2 and in terms of
trigonometric expressions u(θ) ) [cos θ - cos θmin] for the
bending degree of freedom. Similar parametrizations are
employed, e.g., by P. Jensen in the MORBID code;17 also D.
Xie and co-workers use this Morse-cosine expansion for several
molecules, with the parameters first fixed to fit an ab initio PES
and later adjusted to reproduce spectroscopic experimental
data.18,19

As customary, to compute a variational solution of the
eigenproblem corresponding to H, we resort to the expansion
of the eigenfunctions of H on a product basis:

ΨV(R1, R2, θ) ) ∑
j1, j2, j3

cV
j1 j2 j3Φj1 j2 j3

(R1, R2, θ) (5)

where V is a complete set of vibrational quantum numbers

Figure 1. Scheme of internal coordinates used in the present work.
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characterizing an eigenstate of H, cVj1j2j3 are yet-to-be-determined
expansion coefficients, and

Φj1 j2 j3
(R1, R2, θ) ) φ1j1

(R1) φ2j2
(R2) Yj3

(θ) (6)

The 1-dimensional basis functions φiji(Ri) for the stretching
modes were discussed in detail in refs 9 and 14. In particular,
we use here the generalized quasi-number-state basis,14,20 defined
as follows:

φiji
(Ri) ) � Ri ji!

Γ(2σi + ji)
yi

σie-yi/2Lji

2σi-1(yi),

ji ) 0, 1, 2, ..., i ) 1 or 2 (7)

with

yi ) yi(Ri) ) (2si + 1)e-Ri(Ri-Ri,min) (8)

Here Ln
F are generalized Laguerre polynomials, Γ is the standard

Γ function generalization of the factorial,21 and si and σi are
suitable positive parameters, whose values we discuss below.

For the angular variable we use the following basis derived
from the spherical harmonics:

Yl(θ) ) √2πYl0(θ, �) ) NlPl(cos θ) with Nl ) (l +
1
2)1/2

(9)

[Pl(cos θ) are standard Legendre polynomials Pl(z) ≡ (d/dzl)(z2

- 1)l/(2ll!)] which form a convenient orthonormal basis set over
the range 0 e θ e π in the measure d cos θ. This basis was
used successfully by Carter and Handy.15 In that work the
authors evaluated the matrix-element integrals numerically by
the Gauss-Legendre quadrature, while here we use analytical
expressions detailed below.

As the Hamiltonian is a sum of terms, its matrix elements
are also expressed as a sum of individual terms, and each one
of them is expressed as a product of operators acting on the R1,
R2, and θ variables. Accordingly, the matrix elements of H are
computed as sums of products of terms, each of which refers
to one oscillator individually. For example, the matrix elements
of one of the kinetic contributions in eq 2 are evaluated as
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|- cos θ

m3R1R2
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Each of these 1-dimensional matrix elements is then evaluated
using the algebraic methods described below.

A. Stretching-Coordinate Matrix Elements. As a first step,
all Ri-dependent terms in the Hamiltonian of eq 1 must be
expressed as functions of the Morse variable yi(Ri) of eq 8. In
other words, the Vi(Ri)ki potential terms in eq 3 and the Ri

-1 and
Ri

-2 terms in the kinetic energy operator in eq 2 must be
expressed in terms of the corresponding yi(Ri). This is ac-
complished immediately for the potential terms,14 by choosing
for each mode i the same value of Ri in the potential expansion
terms, eq 4, and in the definition of yi(Ri), eq 8, so that Vi ≡
yi/(2si + 1) - 1. The matrix elements of Ri

-1 and Ri
-2 on the

basis of eq 7 could be computed exactly by numerical
integration, but that approach would be contrary to the general
spirit of the present method and very inefficient, since that
procedure would produce a nonsparse matrix. We prefer to fit
the kinetic terms with a sum of powers of Vi:

Ri
-p = ∑

j

Bpi

bpijVi(Ri)
j, p ) 1, 2 (11)

An example of the quality of such a fit is illustrated in Figure
2. The fit targets a reasonably wide region around the equilib-
rium point Ri,min, where it is extremely accurate, but it
deteriorates especially in the large-Ri dissociation region. The
fitting function could be forced to reach the same large-Ri limit
as Ri

-2, but then the fit would deviate much more in the most
important region near the minimum. Accordingly, we prefer to
accept this deviation near dissociation, which causes negligible
numerical error to the final spectra. The fitted Ri ranges and the
best-fit coefficients b1ij and b2ij of Ri

-1 and Ri
-2 for OCS, HCN,

NO2, and H2O are reported in Table A of the Supporting
Information.22 Root mean square (rms) deviations ranging from
3 to 20 cm-1 are obtained for the fits based on eq 11, of the
type exemplified in Figure 2. In practice these deviations affect
the computed vibrational band origins at a completely negligible
level.

The full details of the formalism to construct the analytical
matrix elements of the functions Vi(Ri) of eq 4 are reported
elsewhere.9,23 Here we just note that the idea underlying the
algebraic approach is ultimately related to supersymmetry, which
provides several analytical relations for a class of exactly
solvable problems, including the Schrödinger equation for the
Morse potential. We only report the basic expression of the
matrix elements of the exponential function and of the first
derivative term:

〈φij|e
-Ri(Ri-Ri,min)|φij′〉 )

-Cij′δj, j′-1 + 2(σi + j′)δj, j′ - Cijδj, j′+1

2si + 1
(12)

〈φij|
∂

∂Ri
|φij′〉 )

Ri

2
(Cij′δj, j′-1 - Cijδj, j′+1) (13)

where Cij ) [j(j + 2σi - 1)]1/2. On the basis of these expressions,
all matrix elements of every stretching term in the potential
expansion in eq 3 and in the kinetic terms expressed as in eq
11 can be computed exactly. The matrix representation of Vi(Ri)ki

is the (2ki + 1)-band diagonal.

Figure 2. Comparison between one of the Ri
-2 functions of eq 2, solid

line, indicated simply as R-2, and its fit in terms of Morse-related
functions, eq 11, dashed line. In this calculation, relevant for the H2O
stretching coordinate R, the parameter R = 1.18 a0

-1, the parameter
Rmin = 1.81 a0, and the expansion extends to order B2 ) 5. The
coefficients b2j are adjusted to obtain a best fit of equally spaced points
in the 1.35-3.2 a0 range of R highlighted in the inset.
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The computation of the spectrum of one pure-stretching mode
through the exact diagonalization of algebraic matrices can be
made substantially more efficient by choosing a properly adapted
quantum mechanical basis, specifically tuned to the molecular
potential.14 A better convergence of the calculation of a single
oscillator improves the convergence of the full 3-dimensional
spectral calculation for the triatomic molecule. For example,
for the first stretching oscillator we consider

H1(R1) ) - 1
2µ1

∂
2

∂R1
2
+ ∑

k1)0

Nc

ak100V1(R1)
k1 (14)

The shape of the basis wave functions, eq 7, is tuned by four
parameters, R1,min, R1, s1, and σ1. We fix R1,min to the relevant
equilibrium bond length, and to preserve the matrix sparseness,
we set it to the value used in the definition of V1(R1). By tuning
the remaining s1 and σ1, one has a sufficient basis flexibility to
improve substantially the numerical convergence of the single-
oscillator problem,14 eq 14. We optimize the parameters si and
σi by the minimization of the sum of the Nb lowest bound-state
eigenenergies of the dimer, as defined in eq 25 of ref 14. We
optimize the energies of Nb ) 20 stretching bound states, which
cover and far exceed the spectral range of interest. To get sub-
cm-1 accuracy, Nd,i = 30 basis functions in the one-oscillator
basis are usually sufficient. The values of the final optimized
parameters si and σi adopted in all calculations are collected in
Table 1. In fact, when Nd,i is large enough, the spectral accuracy
depends only weakly on the value of the basis parameters si

and σi, so that the reported values are not particularly critical.
B. Bending-Angle Matrix Elements. On the spherical

harmonics basis, eq 9, it is straightforward to express the matrix
elements of powers of the cos θ function. The bending-angle
dependence of the potential energy surface is then conveniently
fitted to powers of cos θ - cos θmin. In this basis, the bending
potential matrix is sparse and can be expressed analytically. To
evaluate the matrix elements of powers of z ) cos θ, we use
the relations21

〈Yl|z|Yj〉 )
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δl,j+1 +

j
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j(l + 1)

(j + l + 1)√(2j + 1)(2l + 1)
δl,j-2 (16)

and in general, recursively

〈Yl|z
k3|Yj〉 )

j + 1

√(2j + 1)(2j + 3)
〈Yl|z

k3-1|Yj+1〉 +

j
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〈Yl|z

k3-1|Yj-1〉 (17)

Like for stretching matrix elements, the matrix representing
u(θ)k3 is the (2k3 + 1)-band diagonal.

The derivation of the kinetic bending matrix elements is
described in the Appendix. The final result is the following
simple tridiagonal expression:

〈Yl|Tbend|Yj〉 )
1
2( 1

µ1R1
2
+ 1

µ2R2
2)j(j + 1)δl,j -

1
m3R1R2

1

√(2l + 1)(2j + 1)
(l3δl,j+1 + j3δl,j-1) (18)

The basis functions in eq 9 are independent of the shape of the
bending potential, which means that, for bent molecules in
particular, the number of basis functions required by a given
degree of convergence could become unreasonably large.
Unfortunately, there is no way of optimizing the individual
functions to any given angular potential, as we do for the
stretching functions. One way to overcome this problem is to
replace the angular functions in eq 9 with suitably optimized
linear combinations thereof, for example, obtained as low-energy
eigenstates of a purely bending 1-dimensional problem based
on Tbend plus the a00k3

part of the potential expansion in eq 3, as
was suggested, e.g., in ref 15 and references therein. Such a
kind of approach can lead to significant basis size reduction,
but also, unfortunately, to entirely nonzero angular matrix
elements, eventually leading to a less sparse total matrix of H.

III. Results

We come to illustrate the application of the proposed algebraic
method to the calculation of the vibrational spectra of real
triatomic molecules. We target mainly the purely vibrational
energy levels (J ) 0). As trial systems we select two linear
molecules, OCS and HCN, and two bent ones, NO2 and H2O.
They are all well studied by experimental as well as theoretical
techniques which provide accurate spectra for comparison. In
particular, for OCS, NO2, and H2O the literature offers realistic
PESs parametrized in the form of eq 3 suitable for our
method.18,19,24 Accordingly, we have taken the PES function
parameters ak1k2k3

for OCS, NO2, and H2O exactly as in the
referred publications.25 For HCN, we use the potential surface
provided by ref 26 to fit an expansion of the type in eq 3. All
these PESs are determinated starting from ab initio points, but
then the function parameters ak1k2k3

are adjusted so that the
deviation between the calculated vibrational levels and the
observed spectra is minimized. In the energy region considered,
these PESs are accurate enough to allow one to predict even
highly excited vibrational levels with great precision.

TABLE 1: Optimized Parameters si and σi, Number of Target Bound States Nb, and Size Nd,i of the Quantum Basis for Each
Stretching Oscillator of All Molecules Studied in the Present Work

optimized parameters

stretching dimer s σ number of bound states Nb number of basis functions Nd,i

OC 68 40 20 30
CS 76 52 20 30
HC 30 0.20 20 40
CN 74 46 20 30
OH 26 0.01 20 30
NO 33 5.04 20 30
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The values of the Morse exponential parameters Ri and
equilibrium positions Ri,min are collected in Table 2. We fit the
algebraic potential parameters ak1k2k3

for HCN to 737 points
obtained using the PES function as given in ref 26, restricted
to the HCN side of the HCN-HNC isomerization transition.
The angular range is θ ) 180-90°, and the coordinate ranges
are RHC/a0 ) 1.4-4.4 and RCN/a0 ) 1.6-3.0, with energy up
to 45 000 cm-1. Table B in the Supporting Information22 reports
the resulting best fit parameters ak1k2k3

, which produce an rms
deviation of 29 cm-1.

As the bending frequency is usually smaller than the
stretching frequency, and as the bending basis in eq 9 cannot
be optimized to the problem at hand, it is generally necessary
to include a larger number Nd,3 of bending basis states. The
minimum size Nd ) Nd,1Nd,2Nd,3 of the matrix for the total
Hamiltonian, eq 1, which needs to be diagonalized for a very
accurate and reasonably stable spectrum is eventually very
moderate, on the order of Nd ≈ 104. The nonzero matrix
elements of H are on the order of ∼[2/3 max(Nc,B11,B12,B21,B22)
+ 1]3 in each row of the global matrix. For Bki ) 5 g Nc, as in
most calculations of the present work, this yields approximately
80 nonzero matrix elements per row, i.e., a very sparse matrix
to store and diagonalize.

Once the full matrix is constructed and stored, it is diago-
nalized using the Jacobi-Davidson method provided by the
PRIMME package27,28 for sparse matrices. Table 3 summarizes
the quality of the computed spectra, in terms of rms deviations
between the observed and calculated vibrational energy levels.
These levels cover an energy range extending from the ground
state up to several thousand wavenumbers, as indicated in Table
3. The good agreement with experiment shown by the small
rms deviations indicates both the high quality of the considered
PES parametrizations and the satisfactory accuracy of the
employed method. The complete spectral levels obtained by
means of the present approach and their detailed comparison
to experimental data for OCS, HCN, NO2, and H2O are collected
in Tables C-F in the Supporting Information.22 For OCS we
compute and compare to experiment also numerous Π (m )
(1) states.

For the molecules for which spectra were computed before
on the basis of the same PES (but with a different approach to
the solution of the quantum mechanical problem), we obtain
an essentially equivalent accuracy of the spectra, as shown by
the similar rms deviations reported in Table 3. Basically all
discrepancies with experiment are to be attributed to the lack
of accuracy of the adopted PES. Table D in the Supporting

Information22 also collects a few predicted energy levels of HCN
in the 7000-12000 cm-1 spectral range. These calculated values
are also in good agreement with previous calculations by Mourik
et al. Table F in the Supporting Information22 also reports a
few predicted levels for H2O.

The level assignments in terms of local vibrations is not
always straightforward. The wave function of each vibrational
state can be analyzed, and it always results in a complicated
admixture of excitations of all three local vibrational modes.
For instance, the OCS vibrational excitation at EV ) 2937.2
cm-1 consists mainly (35%) of V ) (140) plus 21% V ) (060),
plus other minor components, which confirms the traditional
assignment (140) reported in Table C in the Supporting
Information. However, for example, the largest local component,
V ) (080), of the OCS vibrational excitation near 3990 cm-1 is
26%, while the component on its standard local assignment, V
) (160), is smaller (18%).

IV. Discussion and Conclusions

In the present work, we demonstrate the possibility to
compute the vibrational spectrum of an arbitrary triatomic
molecule on the basis of its PES and using algebraic techniques
for the analytical determination of the matrix elements. The
advantages of this method include simple formulas for the matrix
elements, moderate total Hilbert space size, and sparseness of
the Hamiltonian matrix, all cooperating to a fast and efficient
diagonalization. The generalization of this method to four-atomic
and larger molecules is in principle straightforward, and in these
higher-dimensional contexts the reduced basis size for each
degree of freedom is even more crucial. These advantages make
this method a very promising tool for the analysis of the
vibrational levels of small molecules.

The input of the present approach includes only the atomic
masses and a reasonably dense numerical sampling of the PES:
this is in principle within reach of ab initio electronic structure
quantum chemical calculations. We did carry out a calculation
of the spectrum of HCN based on the ab initio PES generated
by a large set of DFT-LDA (density functional theory in the
local-density approximation) calculations. Due to the known
drawbacks of the LDA, the resulting spectrum shows deviations
from the experimental levels of a few hundred cm-1, but it
proves the possibility to compute even highly excited vibrational
molecular states entirely from first principles, with no parameters
adjusted to the observed spectroscopic data. When highly
accurate quantum chemical methods are applied to a relatively

TABLE 2: Values of Several Relevant Potential Parameters for the Molecules Studied in the Present Worka

system R1,min (a0) R2,min (a0) θmin (deg) R1 (a0
-1) R2 (a0

-1) ref

OCS 2.1849 (OC) 2.9506 (CS) 180.0 1.2382 1.0318 18
HCN 2.0135 (HC) 2.1793 (CN) 180.0 0.9727 1.2290 26
NO2 2.2435 2.2435 133.767 1.6853 1.6853 24
H2O 1.8112 1.8112 104.440 1.1769 1.1769 19

a The HCN parameters are obtained through a best fit to 737 points on the PES as computed in ref 26.

TABLE 3: Basis Size for the Individual Oscillators Nd,i, Total Basis Size Nd, and Standard Deviations of the Computed Spectra
from the Available Experimental Vibrational Levels and from Previous Calculations of the Same Levels

number of basis functions rms deviation

system Nd,1 Nd,2 Nd,3 Nd number of energy levels up to energy (cm-1) obsd - calcd (cm-1) obsd - ref (cm-1)

OCS 30 30 50 45 × 103 145 8057 0.31 0.2618

HCN 40 30 50 60 × 103 34 12389 14 1226

NO2 30 30 55 49.5 × 103 143 8979 1.7 2.124

H2O 30 30 50 45 × 103 69 21247 5.6 1.219
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fine and extensive determination of the PES of a triatomic
molecule, it will be possible to obtain much better predictive
power for a calculation entirely free from any experimental
input.

If the PES is known to a high degree of accuracy even in the
energy region near and slightly above dissociation, the present
method can take advantage of the possibility to extend the basis
set beyond the number of bound states to describe reliably
weakly bound predissociation states in the quasi-continuum. In
the future, the present algebraic approach could be extended to
the study of resonances in the continuum, bound-to-free
transitions in infrared absorption, Franck-Condon processes,
and in principle even atom-molecule and molecule-molecule
collisions. Other perspective applications include the area of
nonrigid molecules (van der Waals complexes, quasi-linear
molecules)11 and potentials with many minima such as those
occurring in torsional oscillations.12 Note finally that a reliable
description of the quantum vibrational dynamics could allow
us to exploit the manageable Hamiltonian structure produced
by the present method to the study of intramolecular vibrational
energy redistribution.
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Appendix: Angular Matrix Elements

The kinetic energy operator, eq 2, contains terms proportional
to cot θ and to [cos(θ/2)]-2, which are singular at the boundary
points θ ) 0 and π. In fact, θ ) π is an especially important
configuration for linear molecules, and it should then be
described smoothly. Luckily, since the integration implied in
the matrix elements is performed over the variable z ) cos θ,
this divergence is not a problem, and all relevant matrix elements
can be computed analytically using several properties of the
spherical harmonics. For brevity, we replace the θ-independent
kinetic coefficients with the shorthand

a1 ) - 1
2( 1

µ1R1
2
+ 1

µ2R2
2) (A1)

a2 ) 1
m3R1R2

(A2)

and define the pure bending part of T as

Tbend(θ) ) (a1 + a2 cos θ)( ∂
2

∂θ2
+ cot θ ∂

∂θ) -

a2(sin θ ∂

∂θ
+ cos θ) + a2 - a1

2
1

1 + cos θ
Πz

2 (A3)

In terms of z ) cos θ, ∂/∂θ f -[sin θ(∂/(∂ cos θ))] ) -(1 -
z2)1/2(∂/∂z), and ∂2/∂θ2 f sin2 θ(∂2/(∂ cos2 θ)) - cos θ(∂/
(∂ cos θ)) ) (1 - z2)(∂2/∂z2) - z(∂/∂z), the angular kinetic energy
is conveniently decomposed as

Tbend(z) ) a1(1 - z2)
∂

2

∂z2
f T1

+ a2z(1 - z2)
∂

2

∂z2
f T2

+ a1(-2z
∂

∂z) f T3

+ a2(-2z2 ∂

∂z) f T4

+ a2(1 - z2)
∂

∂z
f T5

- a2z f T6

+
a2 - a1

2
1

1 + z
m2 f T7 (A4)

We derive the matrix elements of Tbend in the general case of
arbitrary integer m. Because for the m * 0 “Π”, “∆”, etc.
vibrational excitations of linear molecules the T7 term is singular
at θ ) 180°, all its matrix elements in the Yl0 basis diverge: for
general m we need then to consider the natural extension of the
basis of eq 9, namely, the one provided by the Ylm spherical
harmonics:

Y l
m(θ) ) √2πYlm(θ, 0) ) NlmPl

m(cos θ)

with Nlm ) [(2l + 1)(l - |m|)!
2(l + |m|)! ]1/2

(A5)

for l g |m|. For compactness, in the following we write the
matrix elements in terms of associated Legendre polynomials
Pl

m(z) ≡ (-1)(|m|+m)/2(1 - z2)|m|/2 (dPl(z)/dz|m|); i.e., we omit the
normalization factor Nlm, and we use the notation P′lm ) (d/
dz)Pl

m. In the derivation of the Tbend matrix elements, we make
use of the following identities for the associated Legendre
polynomials:

(j + 1 - |m|)Pj+1
m (z) ) (2j + 1)zPj(z) - (j + |m|)Pj-1

m (z)
(A6)

(1 - z2)P′j
m(z) ) -jzPj

m(z) + (j + |m|)Pj-1
m (z) (A7)

(1 - z2)P′′j
m(z) ) 2zP′j

m(z) - [j(j + 1) - m2

1 - z2]Pj
m(z)

(A8)

As a direct consequence of eq A6, eq 15 generalizes to

〈Y l
m|z|Y j

m〉 )
Njm

Nlm
(l - |m|

2j + 1
δl,j+1 + j + |m|

2j + 1
δl,j-1) (A9)

and the recursive relation 17 generalizes to

〈Y l
m|zk3|Y j

m〉 )
Njm

2j + 1(j + 1 - |m|
Nj+1m

〈Y l
m|zk3-1|Y j+1

m 〉) +
j + |m|
Nj-1m

〈Yl|z
k3-1|Yj-1〉 (A10)

These relations are also useful for the calculation of the potential
matrix elements.

The individual kinetic terms are then expressed as

〈Pl
m|T1|Pj

m〉 ) a1〈Pl
m|(1 - z2)|P′′j

m〉

) a1〈Pl
m|2z|P′′j

m〉 - a1 j(j + 1)〈Pl
m|Pj

m〉 +

a1m
2〈Pl

m|
1

1 - z2
|Pj

m〉 (A11)
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〈Pl
m|T2|Pj

m〉 ) a2〈Pl
m|z(1 - z2)|P′′j

m〉

) a2〈Pl
m|2z2|P′j

m〉 - a2j(j + 1)〈Pl
m|z|Pj

m〉 +

a2m
2〈Pl

m|
z

1 - z2
|Pj

m〉 (A12)

〈Pl
m|T3|Pj

m〉 ) -a1〈Pl
m|2z|P′j

m〉 (A13)

〈Pl
m|T4|Pj

m〉 ) -a2〈Pl
m|2z2|P′j

m〉 (A14)

〈Pl
m|T5|Pj

m〉 ) a2〈Pl
m|(1 - z2)|P′j

m〉 ) -a2 j〈Pl
m|z|Pj

m〉 +

a2(j + |m|)〈Pl
m|Pj-1

m 〉 (A15)

〈Pl
m|T6|Pj

m〉 ) -a2〈Pl
m|z|Pj

m〉 (A16)

〈Pl
m|T7|Pj

m〉 )
a2 - a1

2
m2〈Pl

m|
1

1 + z
|Pj

m〉 (A17)

By collecting everything together and simplifying, we obtain

〈Pl
m|Tbend|Pj

m〉 ) -a1 j(j + 1)〈Pl
m|Pj

m〉 - a2(j +

1)2〈Pl
m|z|Pj

m〉 +

a2(j + |m|)〈Pl
m|Pj-1

m 〉 +
a1 + a2

2
m2〈Pl

m|
1

1 - z
|Pj

m〉 (A18)

Accordingly, the bending kinetic matrix elements in the normal-
ized basis Yl

m are

〈Y l
m|Tbend|Y j

m〉 ) -a1 j(j + 1)δlj - a2(j + 1)2〈Yl|z|Yj〉 +

a2(j + |m|) Njm

Nj-1m
δl,j-1 +

a1 + a2

2
m2〈Y l

m|
1

1 - z
|Y j

m〉

) -a1 j(j + 1)δl,j -
a2

√(2j + 1)(2l + 1)
[l2√l2 - m2δl,j+1 + j2√j2 - m2δl,j-1] +

a1 + a2

2
m2〈Y l

m|
1

1 - z
|Y j

m〉 (A19)

where we have inserted the matrix elements of z from eq A9
and combined the two non-Hermitian terms proportional to a2

into a final explicitly Hermitian expression. The important
special case m ) 0 is reported as eq 18 in the main text. The
matrix element in the final term is

〈Y l
m|

1
1 - z

|Y j
m〉 ) NlmNjmlmax[lmax + 1]Km(lmax)

with lmax ) max(l, j) (A20)

and with

K(1(l) ) 1

K(2(l) )
1
2

(l2 + l - 2)

K(3(l) )
1
3

(l4 + 2l3 - 7l2 - 8l + 12)

Unfortunately the last term in eq A19, the one proportional to
m2 and originated by T7 plus parts of T1 and T2, produces a

matrix which, according to eq A20, is not sparse on this basis.
This leads to significant numerical overhead in the calculation
of the m * 0 states, with respect to the m ) 0 states.

Supporting Information Available: Best-fit parameters
describing the PES of HCN according to eq 3, bpik best-fit
parameters of eq 11 for the Ri

-p functions, detailed tables of
the computed vibrational band origins compared to experimental
data, and for HCN and H2O a comparison with spectral data
calculated using different approaches. This material is available
free of charge via the Internet at http://pubs.acs.org.
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